[ Главная ] [ Гостевая ]

[ Назад ] [ Содержание ] [ Вперед ]

Глава 9 Разное

  • Глава 8 Настройка new и delete
  •   Правило 49: Разберитесь в поведении обработчика new
  •   Правило 50: Когда имеет смысл заменять new и delete
  •   Правило 51: Придерживайтесь принятых соглашений при написании new и delete
  •   Правило 52: Если вы написали оператор new с размещением, напишите и соответствующий оператор delete
  • Несмотря на то что эта глава состоит всего из трех правил, все они очень важны.

    В первом правиле подчеркивается, что предупреждения компилятора – не пустяк, на который можно не обращать внимания. По крайней мере, если вы хотите, чтобы ваши программы вели себя правильно. Во втором представлен обзор стандартной библиотеки C++, включая и новую функциональность, предложенную в отчете TR1. И наконец, в последнем правиле представлен обзор проекта Boost – возможно, наиболее важного Web-сайта, посвященного общим вопросам применения C++. Игнорируя советы, изложенные в этих правилах, писать эффективные программы на C++ как минимум нелегко.

    Правило 53: Обращайте внимание на предупреждения компилятора

    Многие программисты зачастую игнорируют предупреждения компилятора. В конце концов, если бы проблема была по-настоящему серьезной, компилятор выдал бы ошибку! Подобные рассуждения могут быть сравнительно безвредными при работе с какими-нибудь другими языками, но в отношении C++ можно поручиться, что создатели компиляторов точнее вас оценивают истинное положение дел. Например, ниже приведена ошибка, которую рано или поздно допускает каждый из нас:


    class B {

    public:

    virtual void f() const;

    };

    class D: public B {

    public:

    virtual void f();

    };


    Предполагается, что функция D::f будет переопределять виртуальную функцию B::f, но ошибка состоит в следующем: в классе B функция-член f – константная, а в D она не объявляется как const. Один из известных мне компиляторов сообщает следующее:


    warning: D::f() hides virtual B::f()

    (предупреждение: D::f() скрывает virtual B::f())


    Многие неопытные программисты, получив подобное сообщение, говорят себе: «Конечно, D::f скрывает B::f – так и должно быть!» Они неправы. Вот что пытается сказать компилятор: f, объявленная в B, не была объявлена повторно в D, а полностью спрятана (объяснение причины этого явления см. в правиле 33). Если оставить без внимания данное предупреждение, это почти наверняка приведет к ошибочному поведению программы, и, чтобы найти причину, потребуются долгие часы отладки – при том, что компилятор давно уже все обнаружил.

    По мере того как вы приобретете опыт работы с предупреждениями конкретного компилятора, уже нетрудно будет понимать, что означают различные сообщения (к сожалению, нередко реальное значение сообщения кардинально отличается от предполагаемого). Потренировавшись, вы впоследствии сможете спокойно игнорировать целый ряд предупреждений, хотя обычно лучше писать код, при компиляции которого компилятор не выдает никаких предупреждений, даже при выборе наивысшего уровня диагностики. Как бы то ни было, прежде чем отклонить предупреждение, важно убедиться, что вы точно вникли в его смысл.

    Раз уж мы затронули тему предупреждений, стоит заметить, что они по своей природе зависимы от реализации, поэтому не следует слишком расслабляться и перекладывать на компилятор обнаружение ваших ошибок. Например, код с сокрытием функции, приведенный выше, проходит через другой (к сожалению, широко распространенный) компилятор без каких-либо предупреждений.

    Что следует помнить

    • Принимайте всерьез предупреждения компилятора и старайтесь добиться того, чтобы ваш код вообще не вызывал предупреждений, даже при задании максимального уровня диагностики.

    • Не впадайте в зависимость от предупреждений компилятора, потому что разные компиляторы предупреждают о разных вещах. При переходе на новый компилятор могут пропасть некоторые предупреждения, на которые вы привыкли полагаться.

    Правило 54: Ознакомьтесь со стандартной библиотекой, включая TR1

    Стандарт C++ (документ, описывающий язык и его библиотеку) был ратифицирован в 1998 году. В 2003 году были внесены небольшие изменения, исправляющие ошибки. Комитет по стандартизации, однако, продолжает работать, и появление «Версии 2.0» стандарта C++ ожидается примерно в 2008 году. Неопределенность относительно точной даты объясняет, почему обычно при ссылке на следующую версию C++ говорят «С++0х» (версию C++ 200х-го года).

    Предположительно, C++0x будет описывать некоторые интересные дополнения к самому языку, но большая часть новой функциональности C++ будет иметь вид добавлений к стандартной библиотеке. Мы уже знаем кое-что из того, что появится в библиотеке, потому что это специфицировано в документе, известном под названием TR1 («Technical Report 1»), созданном рабочей группой по библиотеке C++. Комитет по стандартизации сохраняет за собой право модифицировать описанную в TR1 функциональность, прежде чем она будет включена в официальный стандарт C++0x, но существенные изменения маловероятны. С практической точки зрения, TR1 возвещает начало новой редакции C++, которую можно было бы назвать стандартом C++ 1.1. Нельзя быть эффективно работающим программистом C++, не будучи знакомым с функциональностью, описанной в TR1, потому что она полезна для библиотек и приложений почти любого типа.

    Прежде чем дать краткий обзор того, что включено в TR1, стоит вспомнить основные части стандартной библиотеки C++, специфицированные в C++98:

    Стандартная библиотека шаблонов (STL), включающая контейнеры (vector, string, map и т. п.); итераторы; алгоритмы (find, sort, transform и т. п.); функциональные объекты (less, greater и т. п.) и различные адаптеры контейнеров и функциональных объектов (stack, priority_queue, mem_fun, not1 и т. п.).

    Потоки ввода-вывода (iostreams), включая поддержку определенной пользователем буферизации, интернационализацию ввода-вывода и предопределенные объекты – cin, cout, cerr и clog.

    Поддержка интернационализации, включая возможность иметь несколько активных локалей. Типы наподобие wchar_t (обычно 16-битные char) и wstring (строки, состоящие из wchar_t), облегчающие работу с кодировкой Unicode.

    Поддержка численных методов, включая шаблоны для комплексных чисел (complex) и массивы чистых значений (valarray).

    Иерархия исключений, включая базовый класс exception, производные от него – logic_error и runtime_error, а также разнообразные классы, наследующие этим.

    Стандартная библиотека C89. Все, что есть в стандартной библиотеке C 1989 года, есть и в C++.

    Если что-то из перечисленного вам незнакомо, я советую найти время и исправить ситуацию, обратившись к вашему любимому руководству по C++.

    TR1 специфицирует 14 новых компонентов библиотеки. Все они находятся в пространстве имен std, точнее, во вложенном пространстве tr1. Таким образом, полное наименование компонента TR1 shared_ptr (см. ниже) – std::tr1::shared_ptr. В этой книге я иногда пропускаю std::, когда говорю о компонентах стандартной библиотеки, но всегда указываю префикс tr1::.

    В настоящей книге были приведены примеры следующих компонентов TR1:

    «Интеллектуальные» указатели tr1::shared_ptr и tr1::weak_ptr. tr1::shared_ptr работает как встроенный указатель, но отслеживает, сколько экземпляров tr1::shared_ptr указывает на объект. Этот прием называется подсчет ссылок (reference counting). Когда уничтожается последний такой указатель (то есть счетчик ссылок на объект становится равным 0), объект автоматически удаляется. Это удобно для предотвращения утечек памяти в ациклических структурах данных, но если два или более объектов содержат ссылающиеся друг на друга указатели tr1::shared_ptr, которые образуют цикл, то счетчики ссылок могут оставаться положительными, даже если все внешние указатели на объекты, образующие цикл, будут уничтожены (то есть группа объектов в целом недостижима). В такой ситуации и наступает очередь «слабых указателей» tr1::weak_ptr. Смысл их в том, чтобы выступать в роли указателей, создающих циклы в структурах данных, основанных на применении tr1::shared_ptr, которые в противном случае были бы ацикличны. Указатели tr1::weak_ptr не участвуют в подсчете ссылок. Когда разрушается последний указатель tr1::shared_ptr на объект, то объект удаляется, даже если на него продолжает указывать какой-нибудь tr1::weak_ptr. Однако такие указатели tr1::weak_ptr автоматически помечаются как недействительные.

    tr1::shared_ptr, может быть, наиболее полезный компонент TR1. Я многократно прибегал к нему в этой книге, в том числе в правиле 13, где объяснял, почему это так важно. (К сожалению, в книге не нашлось места для tr1::weak_ptr.)

    tr1::function дает возможность представить любую вызываемую сущность (то есть любую функцию или функциональный объект), чья сигнатура совместима с целевой сигнатурой. Если мы хотим обеспечить возможность регистрации функций обратного вызова, которые принимают параметр int и возвращают string, то можем сделать следующее:


    void registerCallback(std::string func(int)); // типом параметра

    // является функция

    // принимающая int и

    // возвращающая string


    Имя параметра – func – необязательно, поэтому registerCallback может быть объявлена и так:


    void registerCallback(std::string (int)); // то же, что выше; имя

    // параметра опущено


    Отметим, что «std::string (int)» – это сигнатура функции. tr1::function позволяет сделать функцию registerCallback намного более гибкой за счет того, что ее аргументом может быть любая вызываемая сущность, которая принимает параметр int или нечто преобразуемое в int и возвращает string или нечто преобразуемое в string. tr1::function принимает в качестве шаблонного параметра сигнатуру целевой функции:


    void registerCallback(std::tr1::function<std::string (int)> func);

    // параметр func – это любая вызываемая

    // сущность с сигнатурой, совместимой

    // с “std::string (int)”


    Гибкость такого рода удивительно удобна. Я постарался продемонстрировать ее в правиле 35.

    tr1::bind делает все, на что способны адаптеры-связыватели STL bind1st и bind2nd, плюс многое другое. В отличие от связывателей, существовавших до TR1, tr1::bind может работать как с константными, так и с неконстантными функциями-членами. Допускаются также параметры, передаваемые по ссылке. Кроме того, в отличие от старых связывателей, tr1::bind не нуждается в помощи со стороны при работе с указателями на функции, поэтому обращаться к ptr_fun, mem_fun или mem_fun_ref перед вызовом tr1::bind больше нет нужды. Проще говоря, tr1::bind – это связыватель второго поколения, которое существенно лучше своих предшественников. Пример использования я привел в правиле 35.

    Прочие компоненты TR1 я разделил на две группы. Первая группа представляет довольно дискретную, самостоятельную функциональность:

    Хэш-таблицы используются для реализации контейнеров, подобных set, multiset, map и multimap. Интерфейсы новых контейнеров смоделированы на основе соответствующего компонента из предыдущей версии библиотеки. Наиболее удивительны в хэш-таблицах TR1 имена: tr1::unordered_set, tr1::unordered_multiset, tr1::unordered_map, tr1::unordered_multimap. Они отражают тот факт, что в отличие от set, multiset, map или multimap, элементы кэшированных контейнеров TR1 никак не упорядочены.

    Регулярные выражения, включая возможность поиска и замены в строках, перебора соответствий и т. п.

    Кортежи (tuples) – изящные обобщения шаблона pair, уже имеющегося в стандартной библиотеке. Если объект типа pair может содержать только два объекта, то объект tr1::tuple может служить вместилищем для произвольного числа других объектов. Эмигранты из стран Python и Eiffel, возрадуйтесь! Теперь в C++ появилась горсть и вашей родной земли.

    tr1::array – по существу, «STL-изированный» массив, то есть массив, поддерживающий такие функции-члены, как begin и end. Размер tr1::array фиксируется при компиляции; этот объект не использует динамической памяти.

    tr1::mem_fn – синтаксически унифицированный способ адаптации указателей на функции-члены. Как tr1::bind обобщает связыватели bind1st и bind2nd из библиотеки C++98, так и tr1::mem_fn расширяет возможности mem_fn и mem_fn_ref.

    tr1::reference_wrapper – средство, предназначенное для того, чтобы придать ссылкам большее сходство с объектами. В частности, это дает возможность создавать контейнеры, которые ведут себя так, будто содержат ссылки (в действительности контейнер может содержать только объекты или указатели).

    Генератор случайных чисел – средство, намного превосходящее функцию rand, которую C++ унаследовал от стандартной библиотеки C.

    Специальные математические функции, включая полиномы Лагерра, функции Бесселя, полные эллиптические интегралы и многое другое.

    Расширения, совместимые с C99, – набор функций и шаблонов, предназначенных для включения в C++ многих новых средств из библиотеки C99.

    Второй набор компонентов TR1 обеспечивает поддержку более изощренной техники программирования с применением шаблонов, включая и метапрограммирование шаблонов (см. правило 48):

    Характеристики типов (type traits) – набор классов для предоставления информации о типах во время компиляции (см. правило 47). По данному типу T классы-характеристики TR1 могут узнать, является ли он встроенным, обладает ли виртуальным деструктором, представляет ли пустой класс (см. правило 39), может ли быть неявно преобразован в некоторый другой тип U и многое другое. Классы-характеристики TR1 также могут также определить правильное выравнивание для данного типа, что очень важно при написании специализированных функций распределения памяти (см. правило 50).

    • tr1::result_of – шаблон, позволяющий вывести тип значения, возвращаемого функцией. При написании шаблонов часто важно иметь возможность ссылаться на тип объекта, возвращаемого при вызове функции (шаблона), но этот тип может сложным образом зависеть от типов параметров. tr1::result_of упрощает определение возвращаемого типа значения, возвращаемого функцией… tr1::result_of используется и во многих местах в самой библиотеке TR1.

    Несмотря на то что некоторые части TR1 (в частности, tr1::bind и tr1::mem_fn) обобщают ранее существовавшие компоненты, все же TR1 содержит и немало совсем новых возможностей. Ни один из компонентов TR1 не заменяет существующих, поэтому унаследованный код будет продолжать работать.

    Отчет TR1 сам по себе – всего лишь документ[4]. Чтобы воспользоваться преимуществами описанной в нем функциональности, необходим доступ к ее реализации. Рано или поздно код будет поставляться вместе с компиляторами, но в 2005 году, когда писалась настоящая книга, вероятно, не все включенное в TR1 вошло в состав имеющейся у вас реализации стандартной библиотеки. К счастью, нужные компоненты можно найти и в других местах: 10 из 14 компонентов TR1 основаны на библиотеках, доступных на сайте Boost (см. правило 55), поэтому это отличный источник TR1-подобной функциональности. Я говорю «TR1-подобной», потому что хотя значительная часть того, что описано в TR1, и базируется на библиотеках Boost, есть некоторые моменты, в которых нынешние версии Boost не вполне соответствуют спецификации TR1. Возможно, когда вы будете читать эту главу, Boost не только будет предоставлять полностью соответствующую TR1 реализацию, но также и те четыре компонента, которые вошли в TR1 независимо.

    Если вы предпочитаете применять TR1-подобные библиотеки Boost в качестве временной меры, до тех пор, пока вместе с компиляторами не начнут поставляться собственные реализации TR1, возможно, вам придется применить трюк с пространствами имен. Все компоненты Boost находятся в пространстве имен boost, тогда как компоненты TR1 должны находиться в пространстве std::tr1. Вы можете указать компилятору, чтобы он воспринимал ссылки на пространство std::tr1 как на boost. Вот как это делается:


    namespace std {

    namespace tr1 = ::boost; // std::tr1 – псевдоним для пространства boost

    }


    Технически такое поведение считается неопределенным, потому что, как объяснено в правиле 25, запрещается добавлять что-либо в пространство имен std. На практике, однако, возникновение проблем маловероятно. Когда ваш компилятор предоставит собственную реализацию TR1, вам нужно будет только удалить показанный выше псевдоним пространства имен. Код, ссылающийся на std::tr1, останется правильным.

    Возможно, наиболее важная часть TR1, которая не базируется на библиотеках Boost, – это хэш-таблицы. Но хэш-таблицы доступны уже много лет из нескольких источников под именами hash_set, hash_multiset, hash_map и hash_ multimap. Есть неплохой шанс, что библиотеки, поставляемые с вашим компилятором, уже содержат эти шаблоны. Если нет, попросите вашу любимую поисковую машину найти эти имена (как и их аналоги в TR1). Наверняка вы найдете несколько источников – как коммерческих, так и открытых.

    Что следует помнить

    • Основная функциональность стандартной библиотеки C++ состоит из STL, потоков iostream и локалей. Также включена стандартная библиотека C99.

    • TR1 добавляет поддержку «интеллектуальных» указателей (например, tr1::shared_ptr), обобщенных указателей на функции (tr1::function), кэшированных контейнеров, регулярных выражений и еще 10 компонентов.

    • Отчет TR1 сам по себе – всего лишь спецификация. Чтобы воспользоваться преимуществами TR1, понадобится реализация. Одним из источников реализаций компонентов TR1 является проект Boost.

    Правило 55: Познакомьтесь с Boost

    Вы ищете высококачественные библиотеки с открытым кодом, независимые от платформ и компиляторов? Boost к вашим услугам. Вы хотели бы присоединиться к сообществу амбициозных, талантливых программистов на C++, работающих в русле современных представлений о проектировании и реализации библиотек? Boost к вашим услугам. Хотите одним глазком взглянуть на то, как будет выглядеть C++ в будущем? Boost к вашим услугам.

    Проект Boost – это одновременно сообщество разработчиков и набор свободно распространяемых библиотек на C++. Его Web-сайт находится по адресу http://boost.org. Сделайте закладку немедленно!

    Существует множество организаций и Web-сайтов, посвященных C++, но Boost обладает двумя уникальными особенностями. Во-первых, он имеет тесные связи с комитетом по стандартизации C++ и способен влиять на его решения. Boost был основан членами этого комитета, и участники одного часто являются также членами другого. Вдобавок к этому Boost всегда провозглашал одной из своих целей служить платформой для тестирования средств, которые могут быть добавлены в Стандарт C++. Одним из результатов таких отношений стало то, что из 14 новых библиотек, предложенных для включения в C++ в отчете TR1 (см. правило 54), более двух третей основаны на работе, проделанной в Boost.

    Вторая особенность Boost – процедура приема библиотек. В ее основе лежит публичное обсуждение исходного текста всеми заинтересованными лицами. Если вы хотите предложить библиотеку для Boost, начинайте с отправки письма в список рассылки для разработчиков Boost, чтобы оценить, насколько велик интерес к вашей работе, и инициировать процесс ее предварительного обсуждения. С этого начинается цикл, который на Web-сайте называется «Обсудить, улучшить, подать на рассмотрение снова. Повторять, пока не будет достигнут удовлетворительный результат».

    В конечном итоге вы решаете, что ваша библиотека готова для формального внесения на рассмотрение. Менеджер по приемке подтверждает, что она удовлетворяет минимальным требованиям Boost. Например, она должна компилироваться как минимум двумя компиляторами (чтобы продемонстрировать переносимость). Вы также должны подтвердить, что библиотека может быть доступна на приемлемых условиях лицензирования (например, быть бесплатна для коммерческого и некоммерческого использования). Затем ваше предложение предоставляется на официальное рассмотрение сообщества Boost. Во время периода рассмотрения добровольцы изучают представленные вами материалы (исходный код, проектную документацию, пользовательскую документацию и т. п.) и задаются следующими вопросами:

    • Насколько хороши проект и реализация?

    • Является ли код переносимым между компиляторами и операционными системами?

    • Будет ли библиотека использоваться теми, для кого предназначена, то есть людьми, работающими в соответствующей предметной области?

    • Является ли документация ясной, полной и точной?

    Замечания отправляются в список рассылки Boost, чтобы все могли с ними ознакомиться и прокомментировать. В конце периода обсуждения менеджер по приемке решает, является ли ваша библиотека принятой, условно принятой либо отвергнутой.

    Открытое обсуждение позволяет оградить Boost от плохо написанных библиотек, но также помогает авторам уяснить для себя, что входит в понятие проектирования, реализации и документирования кросс-платформенных библиотек промышленного уровня. Для многих библиотек требуется более одного официального рассмотрения, прежде чем их сочтут достойными одобрения.

    Boost содержит десятки библиотек, и к ним постоянно добавляются новые. Время от времени та или иная библиотека исключается, как правило, потому, что ее функциональность перекрывается более новой библиотекой, предоставляющей более широкий диапазон возможностей или лучше спроектированной (то есть более гибкой или эффективной).

    Библиотеки сильно отличаются по размерам и областям применения. На одном полюсе находятся библиотеки, концептуально требующие лишь нескольких строк кода (но обычно после добавления обработки ошибок и обеспечения переносимости они становятся намного длиннее). Одной из таких библиотек является Conversion, которая представляет безопасные и более удобные операторы приведения. Например, входящая в нее функция numeric_cast возбуждает исключение, если преобразование одного числового типа в другой приводит к переполнению, потере значимости либо другим подобным проблемам, а функция lexical_cast позволяет привести любой тип, поддерживающий operator<<, к строке, что очень удобно для диагностики, протоколирования и т. п. Другую крайность составляют библиотеки, представляющие настолько широкие возможности, что им можно посвящать целые книги. Это относится к библиотеке Boost Graph Library (для программирования произвольных структур графов), и Boost MPL Library («библиотека метапрограммирования»).

    Библиотеки Boost посвящены самым разным темам, сгрупированным в несколько основных категорий:

    Обработка строк и текстов. Сюда входят библиотеки для безопасного по отношению к типам форматирования (по аналогии с printf), работы с регулярными выражениями (легли в основу соответствующей функциональности TR1 – см. правило 54), а также лексического и грамматического анализа.

    Контейнеры. Сюда входят библиотеки для работы с массивами фиксированной длины с STL-подобным интерфейсом (см. правило 54), битовыми наборами произвольной длины, а также многомерными массивами.

    Функциональные объекты и высокоуровневое программирование. Эта категория объединяет несколько библиотек, которые лежат в основе функциональности TR1. Одной из наиболее интересных является библиотека Lambda, которая настолько упрощает создание функциональных объектов на лету, что вы вряд ли даже осознаете, что происходит:


    using namespace boost::lambada; // включить средства

    // из библиотеки Lambda

    std::vector <int> v;

    ...

    std::for_each(v.begin(), v_end(), // для каждого элемента x

    std::cout <<_1*2+10<<”\n”); // в v напечатать x*2+10;

    // “_1” – место для

    // подстановки текущего

    // элемента


    Обобщенное программирование. Сюда входит широкий набор классов-характеристик (см. правило 47).

    Метапрограммирование шаблонов (TMP – см. правило 48). Включает библиотеку утверждений (assertions) времени компиляции, а также библиотеку Boost MPL Library. Среди прочего она поддерживает STL-подобные структуры данных, описывающие сущности времени компиляции, к примеру типы:


    // создать контейнер времени компиляции, подобный списку, содержащий

    // три типа (float, double и long double), и назвать его “floats”

    typedef boost::mpl::list<float, double, long double> floats;

    // создать новый контейнер времени компиляции, содержащий типы

    // из “floats”, плюс “int”, вставленный в начало; назвать новый

    // контейнер “types”

    typedef boost::mpl::push_front<floats, int>::type types;


    Такие контейнеры типов (их часто называют спискамии типов – typelists, хотя они могут быть основаны не только на классе mpl::list, но и на mpl::vector) открывают возможность написания широкого диапазона мощных и полезных TMP-приложений.

    Математика и численные методы. Сюда входят библиотеки для работы с рациональными числами, поиска наибольшего общего делителя и наименьшего общего кратного, а также для операций со случайными числами (еще одна библиотека, оказавшая влияние на включение соответствующей функциональности в отчет TR1).

    Корректность и тестирование. Сюда входят библиотеки для формализации неявных шаблонных интерфейсов (см. правило 41) и поддержки программирования на основе методологии «тестирования с самого начала».

    Структуры данных. Сюда отнесены библиотеки для поддержки безопасных по отношению к типам объединений (то есть «любых» неоднородных типов) и библиотека кортежей, которая нашла применение в TR1.

    Межъязыковая поддержка. Содержит библиотеку, обеспечивающую «бесшовное» взаимодействие между программами, написанными на языках C++ и Python.

    Память. Сюда входит библиотека Pool для высокопроизводительных распределителей памяти блоками фиксированного размера (см. правило 50), а также целый ряд «интеллектуальных» указателей (см. правило 13), включая те, что вошли в TR1 (но не только). Одними из таких «интеллектуальных» указателей, не включенных в TR1, являются scoped_array – похожая на auto_ptr конструкция для динамически выделенных массивов; в правиле 44 приведен пример его использования.

    Разное. К этой категории отнесены библиотеки для вычисления CRC, манипуляций с датами и временем, а также прохода по файловой системе.

    Это всего лишь небольшая часть библиотек, которые имеются на сайте проекта Boost. Список далеко не полный.

    Boost предлагает библиотеки для решения самых разных задач, но они, конечно, не покрывают всех тем, которыми занимаются программисты. Так, например, нет библиотеки для разработки графических интерфейсов, как нет и библиотек для доступа к базам данных. По крайней мере, их нет сейчас (когда я пишу эти строки). Но к тому времени, когда вы будете читать эту книгу, они могут появиться. Единственный способ узнать точно – зайти на сайт и проверить. Надеюсь, вы сделаете это прямо сейчас: http://boost.org. Даже если вы не найдете там в точности того, что ищете, все равно обязательно обнаружите что-то интересное для себя.

    Что следует помнить

    • Boost – это сообщество и Web-сайт для разработки бесплатных библиотек на C++ с открытыми исходными текстами, подвергающихся публичному обсуждению. Boost оказывает немалое влияние на процедуру стандартизации C++.

    • Boost предоставляет реализацию многих компонентов TR1, но – кроме того – и множество других библиотек.

    [ Назад ] [ Содержание ] [ Вперед ]

    [ Главная ] [ Гостевая ]


    Топ Разработка игр